# Copyright (C) 2016-2025 Jan Berges
# This program is free software under the terms of the BSD Zero Clause License.
"""Plot weights along line."""
from __future__ import division
import math
[docs]
def fatband(points, width, weights, shifts, nib=None):
"""Represent weighted data points via varying linewidth.
Parameters
----------
points : list of 2-tuple
Vertices of linear spline.
width : float
Overall linewidth scaling factor.
weights : list of float
Weights of `points`.
shifts : list of float
Displacements in weight direction.
nib : float
Angle of broad pen nib. If ``None``, the nib is held perpendicular to
the direction of the line. The direction is always the average of the
directions of adjacent line segments.
Returns
-------
list of 2-tuple
Fatband outline.
See Also
--------
miter_butt : Equivalent routine with miter line join.
"""
N = len(points)
x, y = tuple(zip(*points))
if nib is not None:
alpha = [nib] * (N - 1)
else:
alpha = [(math.pi / 2 + math.atan2(y[n + 1] - y[n], x[n + 1] - x[n]))
% (2 * math.pi) for n in range(N - 1)]
phi = alpha[:1]
for n in range(N - 2):
phi.append(sum(alpha[n:n + 2]) / 2)
if max(alpha[n:n + 2]) - min(alpha[n:n + 2]) > math.pi:
phi[-1] += math.pi
phi.append(alpha[-1])
X = []
Y = []
for sgn in 1, -1:
for n in range(N) if sgn == 1 else reversed(range(N)):
X.append(x[n] + math.cos(phi[n]) * width
* (shifts[n] + sgn * weights[n] / 2))
Y.append(y[n] + math.sin(phi[n]) * width
* (shifts[n] + sgn * weights[n] / 2))
return list(zip(X, Y))
[docs]
def miter_butt(points, width, weights, shifts, nib=None):
"""Represent weighted data points via varying linewidth.
Parameters
----------
points : list of 2-tuple
Vertices of linear spline.
width : float
Overall linewidth scaling factor.
weights : list of float
Weights of `points`.
shifts : list of float
Displacements in weight direction.
nib : float
Angle of broad pen nib. If ``None``, the nib is held perpendicular to
the direction of the current line segment. Line segments are connected
using the miter joint.
Returns
-------
list of 2-tuple
Fatband outline.
See Also
--------
fatband : Equivalent routine without miter line join.
"""
N = len(points)
x, y = tuple(zip(*points))
upper = []
lower = []
for n in range(N - 1):
if nib is not None:
alpha = nib
else:
alpha = math.atan2(y[n + 1] - y[n], x[n + 1] - x[n]) + math.pi / 2
dx = 0.5 * width * math.cos(alpha)
dy = 0.5 * width * math.sin(alpha)
lower.append((x[n] - dx, y[n] - dy, x[n + 1] - dx, y[n + 1] - dy))
upper.append((x[n] + dx, y[n] + dy, x[n + 1] + dx, y[n + 1] + dy))
X = []
Y = []
for segs in upper, lower:
X.append([segs[0][0]])
Y.append([segs[0][1]])
for n in range(1, N - 1):
x1a, y1a, x1b, y1b = segs[n - 1]
x2a, y2a, x2b, y2b = segs[n]
dx1 = x1b - x1a
dy1 = y1b - y1a
dx2 = x2b - x2a
dy2 = y2b - y2a
det = dy1 * dx2 - dx1 * dy2
if det:
X[-1].append((x1a * dy1 * dx2 - y1a * dx1 * dx2
- x2a * dx1 * dy2 + y2a * dx1 * dx2) / det)
Y[-1].append((x1a * dy1 * dy2 - y1a * dx1 * dy2
- x2a * dy1 * dy2 + y2a * dy1 * dx2) / det)
else:
X[-1].append(x2a)
Y[-1].append(y2a)
X[-1].append(segs[-1][2])
Y[-1].append(segs[-1][3])
XA = []
XB = []
YA = []
YB = []
for n in range(N):
a1 = 0.5 + shifts[n] - 0.5 * weights[n]
a2 = 0.5 - shifts[n] + 0.5 * weights[n]
b1 = 0.5 + shifts[n] + 0.5 * weights[n]
b2 = 0.5 - shifts[n] - 0.5 * weights[n]
XA.append(a1 * X[0][n] + a2 * X[1][n])
XB.append(b1 * X[0][n] + b2 * X[1][n])
YA.append(a1 * Y[0][n] + a2 * Y[1][n])
YB.append(b1 * Y[0][n] + b2 * Y[1][n])
return list(zip(XA + XB[::-1], YA + YB[::-1]))