

Solve Eliashberg equations for finite bandwidths

 $-$ Eliashberg theory $-$

The linearized local Eliashberg equations for the density of states *^N*(*ε*) = *^N*(0) *^Θ*(*^E − |ε|*) are

$$
\widetilde{\omega}_{n} = \omega_{n} + 2T \sum_{m}^{\left|\omega_{m}\right| < \omega_{N}} \arctan\left[\frac{E}{\widetilde{\omega}_{m}}\right] \lambda_{n-m}, \qquad \lambda_{n} = 1 + \left[\frac{\nu_{n}}{\omega_{E}}\right]^{2},
$$
\nwhere\n
$$
\phi_{n} = 2T \sum_{m}^{\left|\omega_{m}\right| < \omega_{N}} \arctan\left[\frac{E}{\widetilde{\omega}_{m}}\right] \frac{\phi_{m}}{\widetilde{\omega}_{m}} \left(\lambda_{n-m} - \mu_{N}^{*}\right), \qquad \text{where} \qquad \frac{1}{\mu_{N}^{*}} = \frac{1}{\mu} + \frac{2}{\pi} \int_{0}^{\frac{E}{\omega_{N}}} \frac{dx}{x} \arctan(x).
$$

 $\omega_n = (2n + 1)\pi T$ [$\tilde{\omega}_n$] and $v_n = 2n\pi T$ are [renormalized] fermionic and bosonic Matsubara frequencies and *^φⁿ* is proportional to the order parameter at the critical point (*T , λ, µ, ω*E*, E*).

- Parameters -

- Functions -

def critical(variable='T', epsilon=1e-3, **parameters)

solves the Eliashberg equations varying the parameter indicated by variable, which may be *^T* , *^λ*, *^µ*, *^ω*^E or *^E*, leaving the others fixed. Its given value is used as initial guess, which must not vanish, its critical value is returned. epsilon is the self-consistency threshold.

def Tc(l, u, w, E, A=1.20, B=1.04, C=0.62, **ignore)

returns the critical temperature according to McMillan's formula,

$$
T_{\rm c} = \frac{\omega_{\rm E}}{A} \exp\left[\frac{-B(1+\lambda)}{\lambda - C\lambda\mu^* - \mu^*}\right] \quad \text{with} \quad \frac{1}{\mu^*} = \frac{1}{\mu} + \log\left[\frac{E}{\omega_{\rm E}}\right].
$$

def Eliashberg(T, l, u, w, E, W, rescale=True, **ignore)

returns the maximum eigenvalue of the kernel of the equation for ϕ_n , which is less than, equal to or greater than unity in the normal, critical or superconducting state, respectively. If rescale is False, μ is used in place of μ_N^* .

def residue(x)

 r returns $1/\mu_N^* - 1/\mu$ as a function of E/ω_N .

def eigenvalue(matrix)

returns the maximum eigenvalue of the given matrix.