

Solve Eliashberg equations for finite bandwidths

— Eliashberg theory —

The linearized local Eliashberg equations for the density of states $N(\varepsilon) = N(0) \Theta(E - |\varepsilon|)$ are

 $\omega_n = (2n + 1)\pi T [\tilde{\omega}_n]$ and $v_n = 2n\pi T$ are [renormalized] fermionic and bosonic Matsubara frequencies and ϕ_n is proportional to the order parameter at the critical point $(T, \lambda, \mu, \omega_E, E)$.

— Parameters –

Т	Т	Κ	temperature
1	λ	1	electron-phonon coupling
u	μ	1	Coulomb repulsion
w	ω_{E}	eV	Einstein phonon frequency
Е	Ε	eV	half the electronic bandwidth
W	ω_N	ω_E	cutoff frequency

— Functions —

def critical(variable='T', epsilon=1e-3, **parameters)

solves the Eliashberg equations varying the parameter indicated by variable, which may be T, λ , μ , $\omega_{\rm E}$ or E, leaving the others fixed. Its given value is used as initial guess, which must not vanish, its critical value is returned. epsilon is the self-consistency threshold.

def Tc(l, u, w, E, A=1.20, B=1.04, C=0.62, **ignore)

returns the critical temperature according to McMillan's formula,

$$T_{\rm c} = \frac{\omega_{\rm E}}{A} \exp\left[\frac{-B(1+\lambda)}{\lambda - C\lambda\mu^* - \mu^*}\right] \quad \text{with} \quad \frac{1}{\mu^*} = \frac{1}{\mu} + \log\left[\frac{E}{\omega_{\rm E}}\right].$$

def Eliashberg(T, l, u, w, E, W, rescale=True, **ignore)

returns the maximum eigenvalue of the kernel of the equation for ϕ_n , which is less than, equal to or greater than unity in the normal, critical or superconducting state, respectively. If rescale is False, μ is used in place of μ_N^* .

def residue(x)

returns $1/\mu_N^* - 1/\mu$ as a function of E/ω_N .

def eigenvalue(matrix)

returns the maximum eigenvalue of the given matrix.